Momentum, Carry and Value: Time Series Versus Cross Section

Matthew Sargaison, CIO AHL (with thanks to Jamil Baz, Nick Granger & Cam Harvey)
Important information

This information is communicated and/or distributed by the relevant AHL or Man entity identified below (collectively the “Company”) subject to the following conditions and restriction in their respective jurisdictions.

Opinions expressed are those of the author and may not be shared by all personnel of Man Group plc (‘Man’). These opinions are subject to change without notice, are for information purposes only and do not constitute an offer or invitation to make an investment in any financial instrument or in any product to which the Company and/or its affiliates provides investment advisory or any other financial services. Any organisations, financial instrument or products described in this material are mentioned for reference purposes only which should not be considered a recommendation for their purchase or sale. Neither the Company nor the authors shall be liable to any person for any action taken on the basis of the information provided. Some statements contained in this material concerning goals, strategies, outlook or other non-historical matters may be forward-looking statements and are based on current indicators and expectations. These forward-looking statements speak only as of the date on which they are made, and the Company undertakes no obligation to update or revise any forward-looking statements. These forward-looking statements are subject to risks and uncertainties that may cause actual results to differ materially from those contained in the statements. The Company and/or its affiliates may or may not have a position in any financial instrument mentioned and may or may not be actively trading in any such securities. This material is proprietary information of the Company and its affiliates and may not be reproduced or otherwise disseminated in whole or in part without prior written consent from the Company. The Company believes the content to be accurate. However accuracy is not warranted or guaranteed. The Company does not assume any liability in the case of incorrectly reported or incomplete information. Unless stated otherwise all information is provided by the Company. Past performance is not indicative of future results.

Unless stated otherwise this information is communicated by AHL Partners LLP which is registered in England and Wales at Riverbank House, 2 Swan Lane, London, EC4R 3AD. Authorised and regulated in the UK by the Financial Conduct Authority.

Australia: To the extent this material is distributed in Australia it is communicated by Man Investments Australia Limited ABN 47 002 747 480 AFSL 240581, which is regulated by the Australian Securities & Investments Commission (ASIC). This information has been prepared without taking into account anyone’s objectives, financial situation or needs.

Dubai: To the extent this material is distributed in Dubai it is communicated by Man Investments Middle East Limited which is regulated by the Dubai Financial Services Authority. This marketing material is directed solely at recipients that Man Investment Middle East Limited is satisfied meet the regulatory criteria to be a Professional Client.

Germany: To the extent this material is used in Germany, the communicating entity is Man (Europe) AG, which is authorised and regulated by the Liechtenstein Financial Market Authority (FMA), Man (Europe) AG is registered in the Principality of Liechtenstein no. FL-0002.420.371-2. Man (Europe) AG is an associated participant in the investor compensation scheme, which is operated by the Deposit Guarantee and Investor Compensation Foundation PCC (FL-0002.039.614-1) and corresponds with EU law. Further information is available on the Foundation’s website under www.eas-liechtenstein.li. This material is of a promotional nature.

Hong Kong: To the extent this material is distributed in Hong Kong, this material is communicated by Man Investments (Hong Kong) Limited and has not been reviewed by the Securities and Futures Commission in Hong Kong. This material can only be communicated to intermediaries, and professional clients who are within one of the professional investor exemptions contained in the Securities and Futures Ordinance and must not be relied upon by any other person(s).

Liechtenstein: To the extent the material is used in Liechtenstein, the communicating entity is Man (Europe) AG, which is regulated by the Financial Market Authority Liechtenstein (FMA), Man (Europe) AG is registered in the Principality of Liechtenstein no. FL-0002.420.371-2. Man (Europe) AG is an associated participant in the investor compensation scheme, which is operated by the Deposit Guarantee and Investor Compensation Foundation PCC (FL-0002.039.614-1) and corresponds with EU law. Further information is available on the Foundation’s website under www.eas-liechtenstein.li.

Switzerland: To the extent this material is distributed in Switzerland, this material is communicated by Man Investments AG, which is regulated by the Swiss Financial Market Authority FINMA. This material is not suitable for US persons.

This material is proprietary information and may not be reproduced or otherwise disseminated in whole or in part without prior written consent. Any data services and information available from public sources used in the creation of this material are believed to be reliable. However accuracy is not warranted or guaranteed. © Man 2016 P/16/0544/RW/DE/MEV

www.man.com

© Man 2016
1. Carry, Value and Momentum *almost* Everywhere
2. Signal constructions
3. Performance analysis and results
4. Cross-section versus time-series behaviours
5. Conclusion
Value and Momentum Everywhere. And Carry everywhere else...

A short history

Momentum, Carry and Value

- Heavily written about market phenomena.
- Papers usually focus on explaining the **cross-section** of returns, or **time-series** (univariate/directional) returns.
- Approach often appears ideological...

- We focus on *simple* formulations
- Simulate multi-asset trading via futures, forwards and swaps
- Examine the differences and similarities between cross-section **and** time-series
Aside - It seems books on value sell more than books on momentum

> 1,000,000 copies sold

VS

2,931 copies sold

Source: Amazon and Wiley.
Academic articles on value appear to outnumber those on momentum.

Using an online search of all Journal of Finance articles since 1946:

<table>
<thead>
<tr>
<th>Articles search</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>5,982</td>
</tr>
<tr>
<td>Momentum</td>
<td>417</td>
</tr>
</tbody>
</table>

Source: Journal of Finance website.
The three factor world
… or the absolute building blocks of investing

Value
Slow dissemination of fundamentals

Momentum
Behavioural bias or over/under-reaction to new information

Carry
Systematic forward mispricing or reward for term-risk

Makes money when prices revert or move back

Makes money when prices keep moving in same direction

What is earned when prices don’t move
How factors are traded is a stylistic choice

Value
Slow dissemination of fundamentals
or dumb momentum traders

Momentum
Behavioural bias
or over/under-reaction to new information

Carry
Systematic forward mispricing
or reward for term-risk

Some traditional quant equity strategies will trade:

Cross-section
Equally Long-Short to hedge any common factor in each asset class.
High leverage. Low vol
Profit from relative movements

4 Asset Classes

While others (CTAs) will prefer:

Time-series
Fully directional, actively exposed to underlying market and factor.
Lower leverage. Higher vol
Profit from market movements
1. Carry, Value and Momentum almost Everywhere

2. **Signal constructions**

3. Performance analysis and results

4. Cross-section versus time-series behaviours

5. Conclusion
Our approach

- We focus on *simple* formulations
- Simulate multi-asset trading via futures, forwards and swaps
- Examine the differences and similarities between cross-section *and* time-series
The usual four asset classes
all data January 1990-April 2015

- **Currencies**
 - 32 crosses all versus US$

- **Commodity**
 - 16 Futures

- **Equities**
 - 26 Index Futures

- **Interest Rates**
 - 15 10Yr Swaps

e.g. Equities
- **US**: S&P, DowJones, Nasdaq, MidCap, Russell2000
- **EUROPE**: Eurostoxx50, Germany-DAX, Germany-Tech, Germany-MidCap, France-CAC40, Spain-IBEX, Italy-FTSEMI, Sweden-OMX, Norway-OBX, Greece-FTASE, Finland-HEX25, Belgium-BEL20, Austria-ATX, Netherlands-AEX
- **Japan**: NIKKEI, TOPIX
- **UK**: FTSE100
- **SWITZERLAND**: SMI
- **EM Latam**: Brazil-IBOV, Mexico-MEXBOL
- **EM Asia**: Hong Kong-HIS, Korea-KOSPI2, Taiwan-TWSE, India-NIFTY, India-SENSEX
- **CEEMEA**: Russia-RTSI$, South Africa-TOP40
- **EMEA**: Poland-WIG20, Hungary-BUX
- **AUSTRALIA**: AS51

Factor signal construction - **Carry**
What forward positions earn if spot prices don’t change

FX

Use 3 month FX-forward to imply the carry

\[\text{Carry}_t = 4 \times (\text{Spot}_t / \text{Fwd}_{3M,t} - 1) \]

Equity

Use first two futures of each index

\[\text{Carry}_t = 1/(T_2-T_1) \times (\text{Fut}_{t,T_2} - \text{Fut}_{t,T_1}) / \text{Fut}_{t,T_2} \]

Commodities

To avoid seasonality, use futures 1 year apart

\[\text{Carry}_t = (\text{Fut}_{t,T+1} - \text{Fut}_{t,T}) / \text{Fut}_{t,T+1} \]

Fixed Income

Carry = "carry + roll down".

\[\text{Carry}_t = (S_{10Y,t} - \text{Fixing}_t) / \text{Duration}_t + (S_{10Y,t} - S_{7Y,t}) / 3 = \text{Carry} = \text{Roll} \]

Source: «Dissecting investment strategies in the cross section and time series» Baz et al., December 2015.
Factor signal construction - \textbf{Momentum}

Persistence of behaviour in returns

\textbf{CTA standard construction}

- 3 different time-horizons (\(S_k, L_k\)) = Short, Long lookbacks
- Calculate 3 different EWMA differences:
 \[x_k = \text{ewma}(P, S_k) - \text{ewma}(P, L_k) \]
- Normalise with rolling volatility
- Transform each signal via response function
 \[R(x) \sim (xe^{-x^2/4}) \]
- Final CTA mom signal = equal sum of 3 speeds

\textbf{a. Moving average signals}

\begin{align*}
\text{Price} & \quad \text{Slow Average} \\
\text{Fast Average} & \\
\end{align*}

\textbf{b. Signal = fast - slow}

\textbf{c. Turning signal into position / risk}

Source: «Dissecting investment strategies in the cross section and time series» Baz et al., December 2015.
The difference between the ‘fundamental’ price of an asset and current market price

FX

Purchasing Power Parity: CPI ratios

Equity

Value_t = DividendYield_t

Commodities

Reversion to the mean: today’s price divided by (deflated) historical average

Fixed Income

Value = S_{10Y,t} - GDP_t

Simulated portfolio construction

Cross-Section

For each asset class {
 For each signal {
 rank signal across assets
 >long $1m top 3 assets
 >short $1m bottom 3
 }
} Rebalance Daily

(and assume no costs)

Time-Series

For each asset class {
 For each signal {
 for all n markets
 position = sign(signal)/n
 }
} Rebalance Daily

(and assume no costs)

In each case, regroup asset classes together scaling each asset class to target 10% volatility
1. Carry, Value and Momentum almost Everywhere
2. Signal constructions
3. **Performance analysis and results**
4. Cross-section versus time-series behaviours
5. Conclusion
Results: Cross section
Unsurprisingly, factors back-test positively

<table>
<thead>
<tr>
<th>Individual</th>
<th>Value</th>
<th>Carry</th>
<th>Mom.</th>
<th>Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>FX</td>
<td>0.42</td>
<td>0.67</td>
<td>0.74</td>
<td>0.61</td>
</tr>
<tr>
<td>EQ</td>
<td>0.39</td>
<td>0.33</td>
<td>0.01</td>
<td>0.24</td>
</tr>
<tr>
<td>Commo</td>
<td>0.07</td>
<td>0.77</td>
<td>0.45</td>
<td>0.43</td>
</tr>
<tr>
<td>IR</td>
<td>0.56</td>
<td>0.76</td>
<td>-0.31</td>
<td>0.34</td>
</tr>
</tbody>
</table>

| All Asset | 0.75 | 1.27 | 0.42 |

Simulated Sharpe Ratio Jan 1991 – Apr 2015 (no costs)

- Value seems better than momentum
- But carry seems best!

Sharpe Ratio = 1.4

Past performance is not indicative of future results.
Sharpe ratio is a measure of risk-adjusted performance that indicates the level of excess return per unit of risk. It is calculated using the risk-free rate in the appropriate currency over the period analysed.

Source: «Dissecting investment strategies in the cross section and time series» Baz et al., December 2015.
Results: Time series
Again... described factors back test positively. Momentum and Carry > Value

Simulated Sharpe Ratio Jan 1991 – Apr 2015 (no costs)

<table>
<thead>
<tr>
<th>Individual</th>
<th>Value</th>
<th>Carry</th>
<th>Mom.</th>
<th>Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>FX</td>
<td>0.27</td>
<td>0.55</td>
<td>0.72</td>
<td>0.51</td>
</tr>
<tr>
<td>EQ</td>
<td>-0.13</td>
<td>0.23</td>
<td>0.41</td>
<td>0.17</td>
</tr>
<tr>
<td>Commo</td>
<td>0.22</td>
<td>0.64</td>
<td>0.45</td>
<td>0.44</td>
</tr>
<tr>
<td>IR</td>
<td>0.48</td>
<td>0.83</td>
<td>0.77</td>
<td>0.69</td>
</tr>
<tr>
<td>Avg</td>
<td>0.21</td>
<td>0.56</td>
<td>0.58</td>
<td></td>
</tr>
<tr>
<td>All Asset</td>
<td>0.28</td>
<td>1.25</td>
<td>0.96</td>
<td></td>
</tr>
</tbody>
</table>

- Momentum now better than value
- Again carry seems best!

Sharpe Ratio = 1.37

Past performance is not indicative of future results.
Sharpe ratio is a measure of risk-adjusted performance that indicates the level of excess return per unit of risk. It is calculated using the risk-free rate in the appropriate currency over the period analysed.

Source: «Dissecting investment strategies in the cross section and time series» Baz et al., December 2015.
Asset class/factor returns mostly low correlation in cross-section and time-series

Monthly return correlations (cross-section in grey, time-series blue) Jan 1990 – Apr 2015

<table>
<thead>
<tr>
<th>V-FX</th>
<th>V-EQ</th>
<th>V-Com</th>
<th>V-IR</th>
<th>C-FX</th>
<th>C-EQ</th>
<th>C-Com</th>
<th>C-IR</th>
<th>M-FX</th>
<th>M-EQ</th>
<th>M-Com</th>
<th>M-IR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

- Correlations generally very low
- Exception is between cross-section and time-series formulation for same signals in **FX and Commodities**
- The most heterogeneous asset classes?

Time-series momentum higher Sharpe than cross-section. Opposite for value signals. **Question: why and how predictably?**

© Man 2016

Source: «Dissecting investment strategies in the cross section and time series» Baz et al., December 2015.
1. Carry, Value and Momentum almost Everywhere
2. Signal constructions
3. Performance analysis and results
4. **Cross-section versus time-series behaviours**
5. Conclusion
Okay, so what drives the differences?
A stylised explanation

- Consider the portfolio as a series of factors of decreasing importance
Okay then, so what drives the differences?

Intuition

If first factor dominates, we can:
- Hedge out the factor to lever exposure to more factors (cross-section)
- Concentrate loading on first factor only (time-series)
- Mix both approaches

Key is how effective signal is on 1st vs other factors

Factor loadings - Original portfolio

- With first factor fully hedged
- … with only first factor
- … or with partial hedging

Source: Man Group database.
Evidence in markets - Cross-sections in Equities

- Market factor dominates regional differences. First factor explains ~56% of variance.
- Secondary and third factors show regional variations, but explain ~5-7% of market variance.

Region Key:
- **Europe**
- **Asia**
- **Americas**
- **Japan**

PCA analysis on 5 day overlapping returns 1995-2015.
Source: Man Group database.
Evidence in markets - Cross-sections in Currencies

- Dollar dominates currency market movements. But first factor only explains ~34% of fx market variance

- Secondary and third factors show strong regional variations, explaining ~7-8% of market variance

Region Key:

- **EMEA**
- **G10**
- **Asia**
- **LATAM**

© Man 2016
Modelling the behaviours of markets and signals

Given a simple model for market returns, and signals:

returns: \(r_{i,t+1} = \alpha_i X_{i,t} + \beta_i \varepsilon_{i,t+1} \)
signals: \(\varphi_{i,t} = \gamma_i X_{i,t} + \delta_i \vartheta_{i,t+1} \) - with \(X, \varepsilon, \vartheta \) all iid \((0,1)\)

with \(\text{Cov}(X_i, X_j) = \theta_{i,j} \)
describing the (unobserved) information driving markets and signals.

We can make simplifying assumptions to analyse behaviour.
- equal correlation \(\rho \) across markets
- equal correlation \(\omega \) across signals
- equal correlation \(\theta \) across information

Then cross-sectional portfolio \(SR > \text{time-series} \) iff

\[
\frac{(1-\theta)^2}{(1-\rho)(1-\omega)} \left[\rho \omega (n-1) + 1 \right] > \frac{n}{n-1}
\]
Modelling the behaviours of markets and signals

Ratio of SR’s of cross-sectional to directional for 10 markets, omega = theta

<table>
<thead>
<tr>
<th># mkts --></th>
<th>omega = theta</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.95 0.92 0.90 0.87 0.85 0.82 0.79 0.76 0.73 0.70 0.67 0.64 0.60 0.56 0.52 0.47 0.42 0.37 0.30 0.21</td>
</tr>
<tr>
<td>0.05</td>
<td>0.97 0.96 0.94 0.93 0.91 0.89 0.87 0.84 0.82 0.79 0.76 0.73 0.69 0.65 0.61 0.56 0.51 0.46 0.41</td>
</tr>
<tr>
<td>0.1</td>
<td>1.00 1.00 0.99 0.98 0.97 0.96 0.94 0.92 0.90 0.88 0.85 0.82 0.78 0.74 0.70 0.65 0.60 0.55 0.50</td>
</tr>
<tr>
<td>0.15</td>
<td>1.03 1.04 1.04 1.04 1.03 1.02 1.01 0.99 0.97 0.94 0.91 0.88 0.83 0.79 0.73 0.66 0.58 0.48 0.35</td>
</tr>
<tr>
<td>0.2</td>
<td>1.06 1.08 1.10 1.11 1.10 1.11 1.08 1.06 1.03 1.00 0.97 0.92 0.87 0.81 0.74 0.65 0.54 0.39</td>
</tr>
<tr>
<td>0.25</td>
<td>1.10 1.13 1.15 1.17 1.18 1.19 1.19 1.18 1.17 1.15 1.13 1.10 1.06 1.02 0.96 0.90 0.82 0.72 0.60</td>
</tr>
<tr>
<td>0.3</td>
<td>1.13 1.18 1.21 1.24 1.26 1.28 1.27 1.25 1.23 1.20 1.16 1.11 1.06 1.00 0.94 0.87 0.77 0.66 0.54</td>
</tr>
<tr>
<td>0.35</td>
<td>1.18 1.23 1.28 1.32 1.34 1.36 1.37 1.38 1.37 1.36 1.34 1.30 1.27 1.22 1.15 1.08 0.99 0.87 0.73</td>
</tr>
<tr>
<td>0.4</td>
<td>1.22 1.30 1.35 1.40 1.44 1.46 1.48 1.48 1.47 1.45 1.42 1.38 1.32 1.26 1.18 1.08 0.96 0.88 0.78</td>
</tr>
<tr>
<td>0.45</td>
<td>1.28 1.37 1.44 1.50 1.54 1.57 1.59 1.60 1.60 1.59 1.57 1.54 1.50 1.44 1.37 1.29 1.18 1.04 0.87</td>
</tr>
<tr>
<td>0.5</td>
<td>1.34 1.45 1.53 1.60 1.65 1.69 1.72 1.74 1.74 1.73 1.71 1.68 1.63 1.57 1.50 1.40 1.29 1.14 0.95</td>
</tr>
<tr>
<td>0.55</td>
<td>1.41 1.54 1.64 1.72 1.78 1.83 1.87 1.88 1.89 1.88 1.86 1.83 1.78 1.72 1.64 1.54 1.41 1.25 1.04</td>
</tr>
<tr>
<td>0.6</td>
<td>1.50 1.65 1.77 1.86 1.93 1.99 2.03 2.06 2.07 2.06 2.04 2.00 1.95 1.88 1.80 1.69 1.55 1.37 1.15</td>
</tr>
<tr>
<td>0.65</td>
<td>1.60 1.78 1.92 2.03 2.11 2.18 2.23 2.26 2.27 2.26 2.25 2.21 2.15 2.10 1.98 1.86 1.71 1.52 1.27</td>
</tr>
<tr>
<td>0.7</td>
<td>1.73 1.94 2.10 2.23 2.33 2.41 2.46 2.50 2.52 2.52 2.49 2.46 2.39 2.31 2.21 2.07 1.90 1.69 1.41</td>
</tr>
<tr>
<td>0.75</td>
<td>1.90 2.14 2.33 2.48 2.60 2.69 2.76 2.81 2.83 2.83 2.81 2.76 2.70 2.61 2.49 2.34 2.15 1.91 1.60</td>
</tr>
<tr>
<td>0.8</td>
<td>2.12 2.41 2.64 2.82 2.96 3.07 3.15 3.21 3.24 3.24 3.22 3.17 3.09 2.99 2.86 2.68 2.47 2.19 1.83</td>
</tr>
<tr>
<td>0.85</td>
<td>2.45 2.81 3.09 3.31 3.48 3.62 3.72 3.79 3.82 3.83 3.80 3.75 3.66 3.54 3.38 3.18 2.92 2.60 2.18</td>
</tr>
<tr>
<td>0.9</td>
<td>3.00 3.47 3.83 4.12 4.34 4.52 4.65 4.74 4.78 4.80 4.77 4.70 4.59 4.44 4.24 3.99 3.67 3.26 2.73</td>
</tr>
<tr>
<td>0.95</td>
<td>4.24 4.94 5.48 5.91 6.25 6.51 6.70 6.83 6.91 6.93 6.89 6.80 6.64 6.43 6.14 5.78 5.31 4.72 3.96</td>
</tr>
</tbody>
</table>

Sharpe ratio is a measure of risk-adjusted performance that indicates the level of excess return per unit of risk.
Source: Man Group internal research.
Potential cost of high correlation in cross-sectional trading
Leverage requirements increase quickly with assets

<table>
<thead>
<tr>
<th>Number of assets</th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1.4</td>
</tr>
<tr>
<td>3</td>
<td>1.2</td>
</tr>
<tr>
<td>4</td>
<td>1.2</td>
</tr>
<tr>
<td>5</td>
<td>1.1</td>
</tr>
<tr>
<td>7</td>
<td>1.1</td>
</tr>
<tr>
<td>10</td>
<td>1.1</td>
</tr>
<tr>
<td>15</td>
<td>1.0</td>
</tr>
<tr>
<td>20</td>
<td>1.0</td>
</tr>
<tr>
<td>30</td>
<td>1.0</td>
</tr>
<tr>
<td>50</td>
<td>1.0</td>
</tr>
<tr>
<td>100</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Cross-sectional trading across highly correlated assets can require growing leverage to achieve target volatility.

Sharpe ratio is a measure of risk-adjusted performance that indicates the level of excess return per unit of risk.
Source: Man Group internal research.
Modelling the behaviours of markets and signals
And the empirical evidence?

<table>
<thead>
<tr>
<th>EMPIRICAL RESULTS</th>
<th>Carry</th>
<th>Mom</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Series Sharpe</td>
<td>0.56</td>
<td>0.80</td>
<td>0.28</td>
</tr>
<tr>
<td>Cross Sectional Sharpe</td>
<td>0.67</td>
<td>0.38</td>
<td>0.45</td>
</tr>
<tr>
<td>XS / TS Sharpe</td>
<td>1.20</td>
<td>0.48</td>
<td>1.60</td>
</tr>
<tr>
<td>Avg. Asset Sharpe</td>
<td>0.21</td>
<td>0.30</td>
<td>0.07</td>
</tr>
<tr>
<td>Avg. Sharpe using wrong signal</td>
<td>0.09</td>
<td>0.22</td>
<td>-0.01</td>
</tr>
<tr>
<td>Ratio (Theta)</td>
<td>0.41</td>
<td>0.74</td>
<td>-0.18</td>
</tr>
<tr>
<td>Rho (asset correlation)</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Omega (signal correlation)</td>
<td>0.20</td>
<td>0.44</td>
<td>0.39</td>
</tr>
<tr>
<td>Number of assets (per asset class)</td>
<td>21.50</td>
<td>21.50</td>
<td>21.50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MODEL IMPLIED RESULTS</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Implied Theta</td>
<td>0.33</td>
<td>0.83</td>
<td>0.37</td>
</tr>
<tr>
<td>Implied Ratio (XS / TS)</td>
<td>1.06</td>
<td>0.72</td>
<td>2.99</td>
</tr>
</tbody>
</table>

- We can estimate values for rho and omega from markets and signals.
- Applying prior assumptions, the model implies a value of theta (information correlation).
- Based on observed data, model correctly suggests momentum better traded in time-series, value in cross-section.
- Possible to infer also an ‘optimal’ weight to both portfolio styles.

Source: Man Group internal research.
1. Carry, Value and Momentum almost Everywhere
2. Signal constructions
3. Performance analysis and results
4. Cross-section versus time-series behaviours
5. Conclusion
- Carry, Value and Momentum have been written about and traded for many years
- Time-series (CTAs) and cross-sectional (traditional quant equity strategies) choices often seem **ideological**
- Modelling the relationships between the signals themselves and the assets they trade on yields insights into which *ought* to fare better
- Historical preferences appear somewhat justified, but ideological indifference is better